
RAMEAU: A SYSTEM FOR AUTOMATIC HARMONIC ANALYSIS

Pedro Kröger, Alexandre Passos, Marcos Sampaio, Givaldo de Cidra
Genos—Computer Music Research Group

School of Music
Federal University of Bahia, Brazil

{pedro.kroger,alexandre.tp,mdsmus,givaldodecidra}@gmail.com

ABSTRACT

Automated harmonic analysis is an important and interest-
ing music research topic. Although many researchers have
studied solutions to this problem, there is no comprehen-
sive and systematic comparison of the many techniques
proposed.

In this paper we present Rameau, a framework for auto-
matic harmonic analysis we are developing. With Rameau
we are able to reimplement and analyze previous tech-
niques, and develop new ones as well. We present a per-
formance evaluation of ten algorithms on a corpus of 140
Bach chorales. We also evaluate four of them using preci-
sion and recall and discuss possible improvements.

We also present a numeric codification for tonal mu-
sic with interesting properties, such as easy transposition,
preservation of enharmonic information and easy conver-
sion to standard pitch-class notation.

1. INTRODUCTION

In music, harmonic analysis is the study of vertical sonori-
ties and their connections, and is paramount to the un-
derstanding of tonal compositions. The analyst may find
the chord roots, label sonorities with proper chords names
(such as “A minor”), and identify their relationships using
roman numerals.

Harmonic analysis by computer is an important, chal-
lenging, and interesting music research topic. It is chal-
lenging because the musical material has a large variety
of information such as timbre, notes, rhythm, dynamics,
harmony, and because music unlike image is not a linear
process [15]. The harmonic changes in a choral texture,
where usually all notes in all voices begin and finish at
the same time, are obvious. However, chords are occa-
sionally arppeggiated, incomplete, and intertwined with
non-harmonic tones. These things contribute to increase
considerably the complexity of analysis [20].

There are many practical applications for automatic mu-
sic analysis, such as arranging, detection of possible logi-
cal mistakes in scores, database search, automatic accom-
paniment generation, and statistical analysis of musical
styles for automated composition [21, 26]. Computer-
based harmonic analysis is also important because it can
bring new insights in music theory, in the same way the

use of computer in vision and problem solving has brought
new insights in these areas [26].

Although many harmonic analysis algorithms have been
proposed, no single framework for comparing them has
been developed. Every comparison we found in literature
([20, 2, 27, 24, 10]) is based solely on published examples,
which are not a statistically representative sample. Pardo
and Birmingham [20] state that “no researchers have pub-
lished statistical performance results on a system designed
to analyze tonal music”. In this paper we will present
Rameau, a framework for automatic harmonic analysis of
Western tonal music developed as an attempt to solve this
problem.

We have implemented ten algorithms for harmonic anal-
ysis in the framework and will present in this work a pre-
liminary evaluation of them using a corpus of 140 Bach
chorales from the 371 in the Riemenschneider edition [1].
Rameau automatically compares the answers returned by
the algorithms with answer sheets prepared by musicians.
Since we have answer sheets for only 140 chorales, that
will be the music corpus used in this paper, although rameau
can analyze all 371. While some algorithms are heavily
based on previous research, other approaches, like our us-
age of decision trees, are new. Another significant dif-
ference between our approach and the others found in the
literature is the evaluation of performance using precision
and recall.

2. THE PROBLEM OF AUTOMATED
HARMONIC ANALYSIS

The problem of automated harmonic analysis may better
be understood if we divide it into four sub-problems.

The first problem is pitch spelling. If sharps and flats
are not distinguished the program may have problems when-
ever enharmonic information is relevant. For example, in
[21] a German augmented sixth chord is mistakenly iden-
tified as a dominant seventh chord. Most systems, such
as the one found in [26], either ignore this problem or de-
velop a pitch speller to correct the output. Most harmonic
analysis software, with the notable exception of MusEs
[19] and the system described in [10], use input formats
that lose enharmonic information.

The second problem, the segmentation problem [20],
is to determine what are the vertical sonorities in a piece

of music and group these sonorities in harmonically sig-
nificant segments, or chord-spans. The main reason for
the complexity of segmentation is that the number of pos-
sible segmentations of a piece is roughly an exponential
function of its length, making a thorough evaluation of all
possibilities impractical [21].

The third problem is labeling segments with chord names.
Not every segment forms a chord, some will consist solely
of non-chord tones and other melodic information. La-
beling might require contextual information, which com-
plicates the matter a bit, making local decisions difficult.
Still, over 80% of accuracy is possible ignoring context
(see section 5).

The last problem is finding the main key and the modu-
lations of the piece and assigning a tonal function to each
chord. This has been explored by [22, 13, 27, 28] and oth-
ers, with varying degrees of success. Currently, as our re-
search is still in its infancy, we do not approach this prob-
lem.

3. NUMERIC CODIFICATION FOR TONAL
MUSIC

The pitch-class notation, or some variation such as MIDI,
is probably the most used way to numerically represent
pitch. The main problem with this notation is the loss of
enharmonic spelling. In this section we will revise three
notations created independently by Brinkman, Hewlett,
and Oliveira [4, 9, 18] to address this problem. For the
sake of simplicity we will refer to them as binomial, base-
40, and base-96, respectively.

In the binomial notation notes are represented as tu-
ples in the form of <pc,nc>, where pc stands for pitch-
class (0 to 11) and nc for note-class (0 to 7). Note-class
0 means the note is written as accidentals over C, 1 rep-
resents accidentals over D, and so on. For example, C]
is represented as <1,0>, D[as <1,1>, D] as <3,1>,
and C[as <11,0>. In this last example 11 represents
the pitch-class of the note and 0 indicates how it will be
spelled. The binomial notation also allows a packaged
representation using only single numbers, where the pitch-
class is multiplied by 10 and added to the note-class. For
example, C] becomes 10 and D[11.

Unlike the binomial notation, the base-40 notation uses
only single numbers. The octave is divided linearly in 40
notes from C[[to B]]. Table 1 shows a few notes in this
system.

The base-96 notation is simple, elegant, and overcomes
a few shortcomings in both the binomial and base-40 nota-
tions. As the original publication of the base-96 notation
is available only in Portuguese, we will describe it here,
comparing it with the other two.

The base-96 is also a single number notation. It has all
the qualities of the base-40 notation with some additional
advantages. Table 2 shows how notes are encoded. In this
notation the intervals are invariant under most transforma-
tions, such as inversion and transposition. Table 3 shows
the coding for the intervals. The first column indicates the

note code
c[[1
c[2
c 3
c] 4
c]] 5
– 6
d[[7
.

Table 1. A few notes in the base-40 notation

c d e f g a b
7[7 21 62 76
6[90 8 22 35 49 63 77
5[91 9 23 36 50 64 78
4[92 10 24 37 51 65 79
3[93 11 25 38 52 66 80
2[94 12 26 39 53 67 81
[95 13 27 40 54 68 82
\ 0 14 28 41 55 69 83
] 1 15 29 42 56 70 84

2] 2 16 30 43 57 71 85
3] 3 17 31 44 58 72 86
4] 4 18 32 45 59 73 87
5] 5 19 33 46 60 74 88
6] 6 20 34 47 61 75 89
7] 48

Table 2. Notes in the base-96 notation.

interval name; P, M, m, d, A for perfect, major, minor, di-
minished, and augmented, respectively. The letters before
d and A indicate the quantity of the interval. For instance,
tA is triple-augmented.

The base-96 notation works for up to seven flats and
sharps, which is more than enough for tonal music. This
notation is compatible with the pitch-class system (mod-
ulo 12). In the base-96 notation G = 55, and the result of
55 mod 12 is 7, representing G in the pitch-class notation.

The problem with the base-40 notation is that it does
not work well when there are more than two accidentals.
For example, the interval between C[[and C]] (a quadru-
ple augmented unison) has the same value (6) as dimin-
ished second. On the other hand, in the base-96 notation
this interval can be correctly computed. In our corpus this
would not have direct consequences, but many algorithms,
such as Pardo et al’s, rely on transposing the melodies, and
this could create some issues.

The main problem with the binomial notation is that
operations that are (and should be) simple become com-
plex. In both base-40 and base-96 notations, transposition
is as simple as adding an index to a note, while in the bi-
nomial system it requires two different operations (mod
and div) besides the addition. Its packaged representation
is supposed to simplify things, but as an example, trans-
position becomes something like:

1st 2nd 3rd 4th 5th 6th 7th 8th

sd 7 21 35 49 62 76 90
qd 8 22 36 50 63 77 91
qd 9 23 37 51 64 77 92
td 10 24 38 52 65 78 93
dd 11 25 39 53 66 79 94
d 12 26 40 54 67 80 95
m 13 27 68 82
P 0 41 55 96
M 14 28 69 83
A 1 15 29 42 56 70 84
dA 2 16 30 43 57 71 85
tA 3 17 31 44 58 72 86
qA 4 18 32 45 59 73 87
qA 5 19 33 46 60 74 88
sA 6 20 34 47 61 75 89
oA 48

Table 3. Intervals in base-96 notation

10× ((a÷ 10 + B ÷ 10) mod 12) +
((a mod 10 + B ÷ 10) mod 7) (1)

To do anything non-trivial, like interval-class vectors,
yet extra work has to be done, increasing complexity.

We believe the base-96 codification is a good form of
describing tonal music numerically and it should be more
known among researches and developers. For these rea-
sons we have adopted it, although no algorithm imple-
mented in rameau makes direct use of it as of the writing
of this paper 1 , since they are reimplementations of algo-
rithms that expect pitch classes as input.

4. THE RAMEAU FRAMEWORK

To properly study, understand and compare algorithms for
automated harmonic analysis we have designed and im-
plemented a framework, Rameau, that should enable us
to

1. compare results precisely and reproducibly with man-
ual analysis of a large corpus of music;

2. allow algorithms to access detailed information in
the input score, such as enharmonic differences and
meter; and

3. easily develop new algorithms, test existing ones,
and precisely compare the results.

Reimplementing existing algorithms in the literature
allows us to easily evaluate their accuracy, study their er-
rors and compare their merits and flaws. We are unaware
of any systematic comparison of different approaches to

1 Since then, every algorithm has been extended or reimplemented to
incorporate this codification.

harmonic analysis, similarly to what Gomez and Herrera
[7] do for tonality recognition.

Rameau is written in Common Lisp and runs on the
Steel Bank Common Lisp [5] and CMUCL [12] compil-
ers and the Clisp [8] interpreter on the GNU/Linux and
Microsoft Windows operating systems. Increased porta-
bility is one of our goals.

4.1. Architecture

The architecture of the Rameau framework is simple. First,
a score is parsed into a list of notes, which is then split
into a list of sonorities. Then, these sonorities are sent to
each algorithm for analysis. The analysis results and their
comparison with the answer sheets are then output either
textually or as an annotated score, as in figures 1 and 4.

The algorithms used for analysis are implemented us-
ing a very simple Common Lisp API. To implement an al-
gorithm it is only necessary to place a lisp file in a special
directory and call the register-algorithm function
inside that file, specifying the algorithm’s name, an analy-
sis function and a comparison function as parameters. The
input to the analysis function is a list of sonorities. In
Rameau, sonorities are lists of notes, each note specifying
its onset time, duration, octave and pitch. The output is a
list of either chords or non-chord tones, one for each in-
put sonority. The comparison function is responsible for
determining which parts of the chord are to be considered
when assessing correctness of the analysis. This is neces-
sary because, for example, Temperley and Sleator’s [26]
algorithm does not identify a chord’s mode. Chords are
represented internally as structures that may have a root, a
mode, a seventh, a bass, and other additions. The frame-
work also provides a rich library to deal with common
musical operations.

Using this API we have implemented:

1. a subset of the algorithm described in [21] (ignor-
ing, for now, segmentation),

2. a work-in-progress port of the algorithm described
in [26],

3. four neural networks (using the Fann [17] library)
roughly similar to some described in [27], and

4. four decision trees modeled after the neural networks
(using code from [14]).

Rameau’s source code is publicly available, under a
GNU GPL [6] license, in a git [3] repository at git://
genos.mus.br/rameau.git and for visualization at
http://git.genos.mus.br/?p=rameau.git.

4.2. The interface

Rameau is a command line program, although a GUI ver-
sion is planned. The user can select the chorales to be
analyzed and specify the algorithms for the analysis. The
output shows a table with the partition number, the correct

Figure 1. An analyzed excerpt from chorale 12, “Puer
natus in Bethlehem”

analysis for each sonority (taken from the answer sheet)
and the analysis output for each chosen algorithm. The
nice thing about this output is that it can be further pro-
cessed using regular unix tools such as grep, awk, and sed.

To simplify reading the results, rameau can output a
score with the chorale and the analysis from each algo-
rithm chosen. The music notation program LilyPond [16]
is used to render the score.

Figure 1 shows the result of the analysis of the first
phrase of chorale #12. The first line shows the partition
number, the last line, the expected answer, and the lines
in between, the analysis results for the chosen algorithms.
The output score shows incorrect analysis in bold italic.
Non-chord tones are notated as “—”. It is important to re-
member that while some algorithms identify chords, oth-
ers identify only the root.

Rameau performs the analysis of one chorale, using all
stable algorithms, in less than a half-second on a Pentium
Celeron M at 1.4 GHz with 2 GB RAM linux box. All
140 chorales are analyzed and the results compared with
the answer sheets under 40 seconds.

4.3. Test corpus

We are building a corpus of analyzed and digitalized Bach
chorales to use as training and test data. Bach chorales
were chosen because:

1. they are easily analyzed. For example, the segmen-
tation problem in them consists simply of determin-
ing the sonorities.

2. Their chord density is high — there are many more
chords per measure than in a symphony, for exam-
ple.

3. They are canonical examples of tonal harmony.

4. There are 371 on the Riemenschneider edition, more
than enough to train our algorithms and get precise
error analysis.

5. Their texture is simple and constant. It consists
basically of four voices forming simple triads and
tetrads.

6. Although they have been widely used as examples
[24, 27, 10, 29], no single research has analyzed all
Bach chorales. We believe doing this will create a
useful corpus of harmonic information.

We have answer sheets for 140 chorales and plan on
fully incorporating every chorale in the Riemenschneider
[1] edition soon. The corpus is stored in a subset of the
GNU LilyPond format, from which we generate MIDI
files and typeset scores, possibly annotated with analy-
sis results (both our answer sheets and computer-made re-
sults). The LilyPond format was chosen because it is easy
to parse, easy to read and write, and compact (unlike Mu-
sicXML). Also, there are tools to convert from different
formats (such as MIDI) to it and LilyPond itself can be
used to typeset the scores and export them to MIDI.

When we have answer sheets for all chorales we plan
on incorporating the Kostka-Payne [11] corpus, Beethoven
sonatas, Bach cello suites and other pieces.

4.4. The answer sheet format

The results of manual analysis performed on the chorales
are stored in a simple and flexible text format. It is de-
signed to be as close as possible to usual popular notation
and represent inherent ambiguities in analysis and non-
chord tones.

The first four sonorities of the answer sheet for Bach’s
chorale #1 “Aus meines Herzens Grunde”, for example,
are stored as G G C/E (C7+/E [b]). Each chord
symbols represents a sonority. Chords in parenthesis rep-
resent possible interpretations of a single sonority. Notes
in brackets are non-chord tones, marking sonorities that
do not constitute chords.

This information is then used as answer sheets and train-
ing data on the many algorithms implemented in our sys-
tem.

5. PRELIMINARY RESULTS

5.1. Pardo and Birmingham’s algorithm

The algorithm described in [20] has some interesting prop-
erties. It handles most simple examples of tonal harmony
really well, but has no clear notion, by design, of non-
chord tones, augmented chords and other possible analy-
sis. We have found no need, as of yet, of implementing
the segmentation algorithm, since segmentation is trivial
in Bach Chorales.

The current accuracy is 66± 9%.

Figure 2. The Simple-net

5.2. Temperley and Sleator’s algorithm

We have reimplemented the algorithm used in Temperley
and Sleator’s Melisma Music Analyzer and described in
[26]. We also found their implementation of their algo-
rithm, but neither their program nor our reimplementation
was able to match the performance claimed in the article.
Tsui [27] was also unable to reproduce their results.

The Melisma algorithm is brittle and depends on many
parameters. Its performance is orders of magnitude slower
than any other we have evaluated. Our reimplementation
is also fragile and occasionally fails to process a chorale.
Its accuracy is around 50±20%. The original implementa-
tion’s accuracy couldn’t be computed due to difficulties in
parsing Melisma’s output and matching it with our answer
sheets. On the scores we manually matched, however, the
accuracy seems poor, as can be seen in figures 1 and 4.

5.3. Neural networks

Neural networks are tools for non-linear statistical data
modeling that work by having artificial neurons exchange
information. There are many varieties of neural networks,
each being useful for a certain type of problem. Our net-
works are all multilayer feed-forward neural networks, with
one hidden layer each. This is the standard model for pat-
tern recognition [23].

We have implemented in Rameau four neural-network-
based algorithms for harmonic analysis, basing our ap-
proaches on [27]. The input of our simplest algorithm,
Simple-net, is how many times each pitch class sounds
in a sonority (its pitch count). As output, the network acti-
vates the neuron representing the root for that sonority (or
does nothing, if the sonority does not form a chord). Fig-
ure 2 illustrates its connections and labels. To study the
effect of contextual information in harmonic analysis we
have also implemented Context-net, differing from
the Simple-net only by also looking at the pitch counts
of two preceding sonorities and one immediately the one
being analyzed. Context-net and Simple-net’s per-
formances are equivalent, so perhaps the contextual in-
formation necessary for harmonic analysis is not easily
inferrable from pitch counts. The two other neural net-
works, Chord-net and Mode-net, also determine a
chord’s mode and its seventh. Chord-net’s input is the
same as Simple-net’s, while Mode-net also sees the
results of Context-net’s analysis for each sonority.

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16

A
cc

ur
ac

y
(%

)

Training examples

Simple-net
Context-net

Chord-net
Mode-net

Simple-tree
Mode-tree

Context-tree
Chord-tree

Figure 3. Accuracy versus amount of training data per
algorithm

Our current accuracies for these algorithms are 88±8%
for Simple-net, 87±8% for Context-net, 83±8%
for Chord-net and 83± 8% for Mode-net.

5.4. Decision trees

Decision trees are useful data modeling tools, with many
uses in the machine learning community [14, 23]. They
are most useful when trying to extract meaningful pat-
terns from data in a human-readable way. We have built
four decision trees that perform harmonic analysis, each
mirroring one of the neural networks. Simple-tree
looks at the pitches in a sonority and outputs the sonor-
ity’s root. Context-tree looks also at the pitches in
a few surrounding sonorities. Chord-tree looks at the
pitches of a sonority and outputs its mode. Mode-tree
looks at the pitches of a sonority (transposed to match
Simple-tree’s analysis for that sonority) and outputs
only the mode, which is matched with Simple-tree’s
root to get a result.

Our current accuracies for the decision-tree based al-
gorithms are 82 ± 8% for Simple-tree, 76 ± 9% for
Context-tree, 77±10% for Mode-tree and 50±11
for Chord-tree.

5.5. The effect of training set size

The effect of training set size on the accuracy of the neural
networks and decision trees can be seen in figure 3. One
chorale is enough information for Simple-net. Most
decision-tree algorithms need far more chorales than their
neural-network counterparts to perform similarly, due to
their lower generalization performance.

5.6. Performance analysis

Harmonic analysis can be seen as the process of retriev-
ing chordal and functional information from a tonal piece.
Information retrieval is a fertile research area, and has de-
veloped many tried and true techniques and models. For

◦ ◦7 ø7 m m7 M 7 7+ + nct inc avg
PB 63 59 37 77 0 66 72 0 0 0 0 34
MT 56 54 66 78 61 87 76 27 0 85 23 56
CT 56 54 66 78 67 87 76 27 0 85 23 56
MN 67 0 72 89 70 92 85 34 0 84 0 54
CN 70 0 71 87 75 90 89 35 0 86 18 56

PB: Pardo-Birmingham, MT: Mode tree, CT: Chord tree,
MN: Mode net, CN: Chord net

Table 4. Precision (%)

Chord ◦ ◦7 ø7 m m7 M 7 7+ + nct inc
Freq. 2.8 0.7 2.3 16.4 4.6 37.6 9.6 1.0 0.1 24.3 0.3

Table 5. Frequency of chords in our corpus (%)

this reason we chose to analyze our results in terms of the
two most used metrics in the information retrieval com-
munity: precision and recall [23].

Precision measures how correct are the returned re-
sults, whereas recall measures how likely is a sonority’s
mode to be correctly recognized. While a combined mea-
sure of these characteristics (like average correctness over
all sonorities) is a good assessment of the general perfor-
mance of an algorithm, it disregards a lot of interesting
information about its behavior, so it is interesting to con-
sider them separately.

Tables 4 and 6 show that with proper modifications to
recognize more chord modes Pardo and Birmingham’s al-
gorithm can match or even exceed the accuracy of our cur-
rent machine learning techniques. Table 6 shows that our
machine learning algorithms are missing many melodic
notes. Tables 4 and 6 also indicate that the neural net-
work algorithms are failing to recognize fully diminished,
incomplete, and augmented chords, probably because our
training corpus lacks enough examples of these chords,
as seen in table 5. Because the decision trees are better
at these rare chords we can conclude that they recall few
examples better, while the neural networks tend to gener-
alize more efficiently when more examples are available.

As we implement more algorithms, performance anal-
ysis by rigorous metrics will enable us to draw better con-
clusions about the merits and flaws of each technique.

◦ ◦7 ø7 m m7 M 7 7+ + nct inc avg
PB 86 85 77 91 0 97 93 0 0 0 0 48
MT 68 36 44 89 65 94 82 59 0 55 18 55
CT 68 37 45 88 66 94 82 56 0 58 18 56
MN 81 0 61 93 82 94 90 70 0 68 0 58
CN 86 0 68 93 77 95 88 78 0 67 5 60

PB: Pardo-Birmingham, MT: Mode tree, CT: Chord tree,
MN: Mode net, CN: Chord net

Table 6. Recall (%)

Figure 4. An analyzed excerpt from chorale 54, “Lobt
Gott, ihr Christen, allzugleich”

5.7. Analysis example

The chorale excerpt in fig. 4 is a little tricky to analyze be-
cause all chords in partitions 36–39 have a non-chord tone.
The A in partition 36 is a suspension, the C in p. 37 a pass-
ing note, the G in p. 38 another suspension, and the E in
p. 39 a cambiata. The neural network algorithms correctly
identify the non-chords tones, the decision tree algorithms
fail in partitions 36 and 37 but give a correct answer in p.
38–39, and pardo-birmingham is able to identify the basic
harmonic framework (without non-chord tones, however),
while temperley-sleator incorrectly assumes all chords but
the last have G as root.

6. CONCLUSIONS AND FUTURE WORK

In this paper we described Rameau, a framework for au-
tomatic harmonic analysis of tonal music designed to al-
low an easy comparison between algorithms and results.
We described the problem involved in analyzing harmony
with a computer and presented a numeric codification for
tonal music with interesting properties and easy conver-
sion to and from standard pitch-class notation. We then
analyzed and compared the results of ten algorithms im-
plemented in Rameau using a corpus of 140 Bach chorales.

Although some algorithms in Rameau are heavily based
on previous research, our usage of decision trees is new.
Some of our algorithms using decision trees have a better
accuracy than previous work [20, 26]. Another signifi-
cant difference on our approach is the evaluation of per-
formance using precision and recall.

Currently (as of the publication of this paper) we have
almost finished reimplementing Maxwell’s algorithm, we
have implemented a k-nearest-neighbor classifier and all
algorithms described here have been extended to incorpo-
rate the base-96 codification.

A few important algorithms, like Ulrich’s algorithm
[28], Taube’s MTW [24], Raphael and Stoddard’s hid-
den Markov model [22], and many others are still unim-
plemented in Rameau. We plan on implementing seg-

mentation, which will allow us to extend our corpus of
music and answer sheets, incorporating, for example, the
Kostka-Payne corpus [25]. We are looking for new met-
rics and evaluation techniques, and will extend and im-
prove our existing algorithms accordingly. We also intend
to implement functional and non-chord tone analysis.

We believe all these tasks will be considerably easier
now our basic platform is mostly finished.

7. ACKNOWLEDGEMENTS

This project is sponsored by FAPESB (Fundo de Amparo
à Pesquisa do Estado da Bahia). We’s like to thank Iara
Malbouisson, Jamary Oliveira and Christina von Flach for
helpful advice in preparing this text.

8. REFERENCES

[1] Johann Sebastian Bach. 371 Harmonized Chorales
and 69 Chorale Melodies with figured bass. G.
Schirmer, New York, 1941.

[2] Jérôme Barthélemy and Alain Bonardi. Figured bass
and tonality recognition. In Stephen Downie and
David Bainbridge, editors, Proceedings of ISMIR
2001, pages 129–136, Bloomington, Indiana USA,
October 2001.

[3] Petr Baudis. Git user’s manual. Avail-
able at www.kernel.org/pub/software/
scm/git/docs/user-manual.html, s.d.

[4] Alexander R. Brinkman. A binomial representation
of pitch for computer processing of musical data.
Music Theory Spectrum, 8:44–57, 1986.

[5] SBCL development team. Sbcl 1.0.13.45 user man-
ual. Available at www.sbcl.org/manual/,
2007.

[6] Free Software Foundation. GNU general public li-
cense. Avalilable at www.gnu.org/licenses/
gpl-3.0.txt, Jun 2007.

[7] Emilia Gomez and Perfecto Herrera. Estimating
the tonality of polyphonic audio files: Cognitive
versus machine learning modelling strategies. In
Claudia Lomeli Buyoli and Ramon Loureiro, ed-
itors, Proceedings of ISMIR 2004, pages 92–95,
Barcelona, Spain, October 2004. Universitat Pom-
peu Fabra.

[8] Bruno Haible, Michael Stoll, and Sam Steingold.
Clisp. Available at clisp.cons.org, 2007.

[9] Walter B. Hewlett. A base-40 number-line repre-
sentation of musical pitch notation. Musikometrika,
4:1–14, 1992.

[10] Plácido R. Illescas, David Rizo, and José M. Iñesta.
Harmonic, melodic, and functional automatic analy-
sis. In Proceedings of the 2007 International Com-
puter Music Conferrence, pages 165–168, 2007.

[11] Stefan M. Kostka, Dorothy Payne, and Allan
Schindler. Tonal harmony, with an introduction to
twentieth-century music. McGraw-Hill, Boston, 5th
edition, 2003.

[12] Robert A. MacLachlan. Cmucl user’s manual. Avail-
able at common-lisp.net/project/cmucl/
doc/cmu-user/, Nov 2006.

[13] H. John Maxwell. An expert system for harmonizing
analysis of tonal music. In K. Ebcioglu, O. Laske,
and M. Balaban, editors, Understanding Music with
AI: Perspectives on Music Cognition, pages 335–
353. AAAI Press, 1992.

[14] Tom M. Mitchell. Machine Learning. McGraw-Hill,
New York, 1997.

[15] Rémy Mouton and François Pachet. Numeric vs
symbolic controversy in automatic analysis of tonal
music. In IJCAI’95 Workshop on Artificial Intelli-
gence and Music, pages 32–40, 1995.

[16] Han-Wen Nienhuys and Jan Nieuwenhuizen. Lily-
pond. Available at www.lilypond.org, Jan
2008.

[17] Steffen Nissen. Fast artificial neural network
library. Available at leenissen.dk/fann/
html/files/fann-h.html.

[18] Jamary Oliveira. Em busca de uma codificação.
Cuadernos Interamericanos De Investigación en
Educación Musical, 1(2), 2001.

[19] François Pachet, Geber Ramalho, Jean Carrive, and
Guillaume Comic. Representing temporal musical
objects and reasoning in the MusES system. Journal
of New Music Research, 5(3):252–275, 1996.

[20] Bryan Pardo and William P. Birmingham. Auto-
mated partitioning of tonal music. Technical report,
Electrical Engineering and Computer Science De-
partment, University of Michigan, 1999.

[21] Bryan Pardo and William P. Birmingham. Algo-
rithms for chordal analysis. Computer Music Jour-
nal, 26(2):27–49, 2002.

[22] Christopher Raphael and Josh Stoddard. Harmonic
analysis with probabilistic graphical models. In Hol-
ger H. Hoos and David Bainbridge, editors, Proceed-
ings of ISMIR 2003, Baltimore, Maryland, USA, Oc-
tober 2003. The Johns Hopkins University.

[23] Stuart Russell and Peter Norvig. Artificial Intelli-
gence: A Modern Approach. Prentice Hall, 2nd edi-
tion, 2002.

[24] Heinrich Taube. Automatic tonal analysis: Toward
the implementation of a music theory workbench.
Computer Music Journal, 23(4):18–32, 1999.

[25] David Temperley. Bayesian models of musical struc-
ture and cognition. Musicae Scientiae, 8(2):175–
205, 2004.

[26] David Temperley and Daniel Sleator. Modeling me-
ter and harmony: a preference-rule approach. Com-
puter Music Journal, 23(1):10–27, 1999.

[27] Wan Shun Vincent Tsui. Harmonic analysis us-
ing neural networks. Master’s thesis, University of
Toronto, 2002.

[28] John Wade Ulrich. The analysis and synthesis of
jazz by computer. In Proc. of the 5th IJCAI, pages
865–872, Cambridge, MA, 1977.

[29] Terry Winograd. Linguistics and the computer anal-
ysis of tonal harmony. The Journal of Music Theory,
12:2–49, 1968.

	Index
	ICMC 2008 Home
	Conference Info
	Welcome from the ICMA President
	ICMA Officers
	Welcome from the ICMC 2008 Organising Committee
	ICMC 2008
	Previous ICMCs
	ICMC 2008 Paper Panel & Music Curators
	ICMC 2008 Reviewers
	ICMC 2008 Best Paper Award

	Sessions
	Monday, 25 August 2008
	Languages and Environments 1
	Interaction and Improvisation 1
	Sound Synthesis
	Computational Modeling of Music
	Demos 1
	Posters 1
	Interaction and Improvisation 2
	Aesthetics, History, and Philosophy 1

	Tuesday, 26 August 2008
	Miscellaneous
	Algorithmic Composition Tools 1
	Network Performance
	Computational Music Analysis 1
	Panel 1: Reinventing Audio and Music Computation fo ...
	Panel 2: Towards an Interchange Format for Spatial ...

	Wednesday, 27 August 2008
	Studio Reports 1
	Mobile Computer Ensemble Play
	Demos 2
	Posters 2
	Algorithmic Composition Tools 2
	Interface, Gesture, and Control 1

	Thursday, 28 August 2008
	Interface, Gesture, and Control 2
	Languages and Environments 2
	Spatialization 1
	Computational Music Analysis 2
	Panel 3: Network Performance
	Demos 3
	Posters 3

	Friday, 29 August 2008
	Sound Processing
	Aesthetics, History, and Philosophy 2
	Interface, Gesture, and Control 3
	Spatialization 2
	Algorithmic Composition Tools 3
	Studio Reports 2

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Sessions

	Topics
	critical theory/philosophy of technology, postmodern cy ...
	sociology/anthropology of everyday sounds, situated per ...
	history of computer music, women and gender studies, ed ...
	philosophy/culture/psychology, music information retrie ...
	electroacoustic music composition, aesthetics of music, ...
	singing analysis/synthesis, music analysis/synthesis, v ...
	interactive and real-time systems and languages, music ...
	human-computer interaction, sound synthesis/analysis, i ...
	interaction design, computer music, performance art, el ...
	physical interface design, performance systems, gesture ...
	language/education/history/sociology of computer music, ...
	composition systems and techniques, languages for compu ...
	programming languages/systems, audio synthesis/analysis ...
	composition, music cognition, music informatics, human- ...
	music information retrieval, audio signal processing, p ...
	computational musicology, music cognition, music and AI ...
	music cognition, rhythm/meter/timing/tempo, computation ...
	music information retrieval, audio content analysis, to ...
	spatial audio, audio signal processing, auditory percep ...
	physical modelling, spatial audio, room acoustics, aura ...
	sonic interaction design, physics-based sound synthesis ...
	audio signal processing, sound synthesis, acoustics of ...
	audio signal processing, acoustics, software systems
	physics-based sound synthesis, virtual room acoustics
	composition, music analysis, software for pedagogy
	PANEL: Towards an Interchange Format for Spatial audio ...
	PANEL: Network Performance
	PANEL: Reinventing Audio and Music Computation for Many ...

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Pedro Kroger
	Alexandre Passos
	Marcos Sampaio
	Givaldo Cidra

