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Abstract: The Musical Contour literature provides multiple algorithms for melodic contour similarity.
However, most of them are limited in use by the melody length of input data. In this paper I review these
algorithms, propose two new algorithms, compare them in three experiments with contours from the Bach
Chorales, from a Schumann song and automated generated, and present a brief review of the contour and
similarity literature.
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I. INTRODUCTION

of music structures such as motives, themes, and chords. The measurement of music

similarity is in the heart of the Music Analysis, as the base for identity tests and comparison
of musical units. Music similarity has been discussed by many researchers of Music Theory,
Ethnomusicology, Music Psychology and Cognition, and Music Information Retrieval fields.

The music contour similarity is one of the three kinds of melodic similarity, together with
the pattern and global similarity [8]. There are many algorithms to measure the similarity
between melodic contours in the literature, such as the Oscillation spectrum correlation [26, 27],
the Embedded contour patterns [17], and the Rigid and Fuzzy comparison [22]. Despite the
abundance of contour similarity algorithms, there is none that performs well with both small
and large contours. Algorithms such as Rigid and Fuzzy comparison are only able to compare
contours with the same size, the Embedded contour algorithm has high computational complexity
(factorial), and Oscillation spectrum algorithm doesn’t perform well with small contours with less
than six points—See [7] for further information concerning computational complexity.

In this paper, I present two new contour similarity algorithms to fill this gap, a comparison
with the available contour similarity algorithms and a brief review of the similarity literature.

Slmilarity is a paramount concept in Music. It is important because it supports the recognition

II. SIMILARITY

Many researchers have addressed concepts and measures concerning melodic similarity [8, 21, 28,
27,5,9,15,19, 4]. According to Eerola [8], two melodies are considered similar if they contain
similar short patterns of pitches or rhythms, or resemblance shape. He classifies the similarity in
three types: pattern, contour and global similarity—a combination of various representations of
melodies, however, the nature of melodic similarity is not clear neither in the Psychology nor in
the Music Information Retrieval research fields [16, p. 1].
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Melodic similarity is a relative concept and it depends on the chosen music properties set used
to compare the melodies [13, p. 1]. In a way, this relativeness helps to understand why of so
many measures of similarity available in the literature. These measurements are based on multiple
approaches such as the string matching of individual notes and geometric representation of
melodies. Technically, the basic techniques for measuring the similarity are edit distance, n-grams,
correlation and difference coefficients, and hidden Markov models [19].

The music contour similarity has been measured by multiple algorithms, based on the corre-
lation of contour oscillations spectra [26, 27], the patterns embedded in the compared contours,
and on the relations among pairwise contour points [17]. These algorithms return real values
from zero to one to represent similarity between contour pairs. Other contour similarity measures
returns another kind of information, such as complexity order [2, 6], or compare one contour with
an abstract average contour of a collection [22]. In Section IV, I review the algorithms that return
real values for comparisons of contour pairs.

III. Music CONTOUR BASIC CONCEPTS

The understanding of a minimum set of contour concepts is necessary to follow this paper’s
premise!. A contour is an abstraction of musical parameters. Technically, a music contour
is defined as “a set of points in one sequential dimension ordered by any other sequential
dimension” [18, p. 283]. The melodic contour, for instance, is the pitch set (abstracted as contour
points) ordered in time. A sequential dimension is an attribute dimension where the values can
be ordered. Note pitch and note duration, for instance, are sequential dimensions, because the
pitches can be ordered from lower to higher and duration from shorter to longer. Thus, despite
the focus on the melody in the algorithm’s analysis in Section VI, they can be used to compare
contours of any musical dimension.

The central aspect of the contour study is the observation of the relationships among its
points. The relation of any pair of contour points (CP) is ternary: one CP is lower, equal to, or
higher than the other (See the Comparison Function [18], in the Equation (1)). The contour can
be analyzed and represented in a linear or combinatorial” way. The linear representation—also
known as Contour Adjacent Series (CAS) [11]—regards only the relations between adjacent CPs;
the combinatorial contour considers relations between adjacent and non-adjacent CPs. The linear
representation is a sequence of “+” and “-” signs to represent the relations between adjacent CPs
and the combinatorial representation is a sequence of positive integers, where is the CP with the
lower value.

— :ifb<a
CMP(a,b) =< 0 :ifb=a (1)
+ :ifb>a

For instance, let the contours M and N (Figures 1c and 1d), both from the Mozart’s Eine Kleine
Nachtmusik antecedent and consequent melodies (Figures 1a and 1b). Their Contour Adjacent
Seriesare M < -+-+-+++ >and N < + - + - + - - - >, and their combinatorial representation
are M<101010123>and N<323232120 >.

The relations among the contour points are represented in a self-comparison matrix. Two
contours are equivalents if they or one of their reflexions—retrograded, inverted, and retrograded-
inverted versions—share the same comparison matrix. For instance, the M and N comparison

1See [2] and [3] for further information concerning Music Contour Theory.
2See [20] and [23] for further information concerning combinatorial contours.
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matrices are represented in Tables 1a and 1b. They are not equivalent, once their matrices are
different.

(a) Antecedent melody (b) Consequent melody

,<101010123> 1 <323232120>

3.0~ 3.0 -
2.5- - 2.5 -
2.0- - 2.0 -
15- - 15-
1.0 - 1.0 -

0.5 - - 0.5 -

0.0 ~ g i g i g i | - 0.0 4 .
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

(c) Antecedent contour (d) Consequent contour

Figure 1: Mozart’s Eine Kleine Nachtmusik K525 antecedent and consequent.

1 0 1.0 1 0 1 2 3 32 3 2 3 2 1 20
110 - 0 - 0 - 0 + + 3o - 0 -0 - - - -
O+ 0 + 0 + 0 + + + 2+ 0 + 0 + 0 - 0 -
110 - 0 - 0 - 0 + + 3o - 0 -0 - - - -
O+ 0 + 0 + 0 + + + 2|+ 0+ 0+ 0 - 0 -
1,0 - 0 - 0 - 0 + + 30 - 0 - 0 - - - -
o+ 0 + 0 + 0 + + + 2|+ 0 + 0 + 0 - 0 -
110 0o - 0 0o + + 11+ + + + + + 0 + -
2/ - - - - - - - 0 + 2|+ 0+ 0 + 0 - 0 -
3(- - - - - - - -0 oO/l+ + + + + + + + 0

(a) Antecedent contour matrix (b) Consequent contour matrix

Table 1: Mozart’s Eine Kleine Nachtmusik K525 antecedent and consequent contour self-matrices.

IV. AVAILABLE CONTOUR SIMILARITY ALGORITHMS

Most of the contour similarity algorithms available in the Contour Theory returns a real number
between 0 and 1, other algorithms such as Trace [6] and Multiple Linear Regression [2] returns
a polynomial degree to express the contour complexity; and the Fuzzy similarity [22] returns
an index value in the comparison of a contour with a set of contours that it belongs. Only the
algorithms that return 0 to 1 similarity index between pairs of contours are presented in this paper.
For illustration purposes, the melodic contours of Mozart’s Eine Kleine Nachtmusik antecedent and
consequent (Figure 1) are used for similarity calculus with all algorithms. The formalization of
these algorithms is available in the Appendix.
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10 1 0 1 0 1 2 3 3 2 3 2 3 2 1 2 0
1 -0 - 0 - 0 + + 3 -0 -0 - - -
0 + 0 + 0 + + + 2 + 0 + 0 - 0 -
1 o - 0 + + 3 o - - - -
0 + 0 + + + 2 + 0 - 0 -
1 -0+ + 3 - - - -
0 + + + 2 - 0 -
1 + o+ 1 + -
2 + 2 _
3 0

(a) Antecedent contour matrix (b) Consequent contour matrix

Table 2: Comparison between upper triangle of the Mozart's Eine Kleine Nachtmusik K525 antecedent and consequent
contour self-matrices.

i. Rigid Matrix (CSIM)

The Contour Similarity (CSIM) [17] is based on the equivalence of all pairwise contour points
of both compared contours. Equal values are summed and divided by the number of relations
(See Algorithm 1). This calculus can be made also using the upper right-hand triangle of their
comparison matrix.

For instance, the equivalent values of the Mozart’s contours M and N matrices (Figure 1)
are represented in gray color in Table 2. The similarity between these matrices is 0.44 (16/36).
However, the similarity value must be the highest of the comparison among all the reflexions of
the two given contours (the original, inverted, retrograded and retrograded-inverted versions).
The similarity values for these forms of M and N contours are 0.33, 0.44, 0.5 and 0.55. Thus, the
algorithm returns 0.55 as the similarity between the contours M and N. This similarity value is
obtained by more than one combination of these reflexions versions, such as between the contour
M<101010123>andI(N)<010101213 >.

I prefer to call this algorithm as Rigid Similarity Algorithm to differ to the Fuzzy one. In
Section VI this algorithm is abbreviated as CMS (Contour Matrix Similarity).

ii. Embedded contours (ACMEMB)

The All Mutually Embedded Contours similarity index (ACMEMB) is presented by [17] as a
solution to compare contours with different sizes. It is a type of global/local pattern similarity
algorithm. All the contour subsequences embedded in both given contours are calculated and
the number of subsequences embedded in both given contours is divided by the total number of
subsequences.

The calculus of this index demands the subroutines TRANSLATION (Algorithm 2), CEMB
(Algorithm 3), ALLCEMB (Algorithm 6), and COUNT (Algorithm 5). The TRANSLATION
algorithm returns a normalized version of the contour. For instance, a subsequence < 361 > is
normalized to < 12 0 >. The CEMB algorithm is a modified Combination algorithm®. It returns
all the given contour m-sized subsequences combinations. The only change to the combination
algorithm is the contour translation of the subsequences. For instance, the function CEMB(3, A)

3See https://rosettacode.org/wiki/Combinations for multiple implementations of combinations algorithms in
multiple languages.
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returns the contour 3-sized subsequences <021 >,<012>,<012>,and <102 >, for the
given contour A <0213 >.

The ALLCEMB algorithm returns all the possible subsequence combinations of a given contour,
with sizes 2 to 1, where n is the contour size. These subsequences are used in the ACMEMB
(Algorithm 6) to return the similarity value between the given contours. For instance, the
Embedded contour similarity value for the Mozart’s contours M and N (Figure 1) is 0.28.

In Section VI this algorithm is abbreviated as EMB.

iii. Contour correspondence

Ellie Hisama [12] proposed the contour deviance measure, the number of deviations between
the adjacency series of two given contours. In order to return a similarity index, this operation
could be inverted and return the correspondences between the adjacency series of the two given
contours. This value could be divided by the series size, to return a real number between 0 and 1,
such as in the algorithm 7. Thus, the similarity index between the Mozart’s contours M and N is
0.75.

In Section VI this algorithm is abbreviated as COR.

iv. Correlation of contour oscillation spectrum amplitude (OSC)

In the contour oscillation spectrum approach, the contour profile is considered as a sample of a
complex wave. The similarity between the given contours is the correlation value between the
amplitude spectra of both contours. This calculus can be divided into two parts: an adapted
inverse (Fast) Fourier Transform to obtain the wave partials amplitudes* (Algorithm 8), and a
Pearson’s correlation between these amplitudes.

For instance, the oscillation spectra of the Mozart’s contours M and N are [(0.46 — 0.97), (0.36 —
1.89f), (0.19 — 2.62j), (0.25 — 1.5)] and [(0.4 + 1.8), (0.14 + 0.69f), (0.19 + 1.57j), (0.48 — 0.02/)],
respectively. The amplitude is given by the real part of these complex numbers, in polar coordinates.
The correlation between the amplitude of these spectra is 0.14, the similarity value between their
respective contours.

In cases where the contour spectra have different sizes, the last partials of the bigger contour
are discharged. For instance, let the contours A <10321>and B <2021324 >, and
their spectra [(0.55 — 3.00f), (0.46 — 0.72j)] and [(0.57 — 1.57j), (0.33 — 1.57), (0.52 — 1.57j)], the
last partial of B—(0.52 — 1.57j)—is not considered for the correlation. In this case, the correlation
is 0.19.

I am using the first version of the algorithm, proposed in 1999, with unweighted contours, to
follow Friedmann [11] initial definitions in a more strict way: the repeated adjacent pitches are
not taken into account and the real intervals between pitches are discarded. Thus, I don’t use time
weighted pitches, as proposed by Schmuckler [27].

In this paper, we use the acronym OSC to refer to the Correlation of contour oscillation
spectrum amplitude.

V. PROPOSED ALGORITHMS

I propose two new contour similarity algorithms: the Adjacent Global Pattern Contour Similarity
Algorithm (AGP) and the Adjacent Edit Distance Contour Similarity Algorithm (AED). Both

4See https://rosettacode.org/wiki/Fast_Fourier_transform for multiple implementations of the Fast Fourier
Transform (FFT) algorithm. In the Algorithm 8, I present an Inverted Discrete Fourier Transform, instead of FFT, just for a
better comprehension.
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contours are based on established string similarity algorithms.

i. Adjacent Global Pattern Similarity Algorithm (AGP)

The Adjacent Global Pattern Contour Similarity Algorithm (AGP) is an application of the standard
Ratcliff/Obershelp Pattern Recognition algorithm [24] to handle the contour similarity prob-
lem. This algorithm is available in the Dictionary of Algorithms and Data Structures [1] and is
implemented in Difflib Python library® [10].

Originally, the Ratcliff/Obershelp algorithm returns an index for the similarity between two
given strings. The algorithm finds the longest common substrings of the both given strings, counts
the remaining characters and divides this number by the sum of the two strings sizes.

For instance, let the strings “Pennsylvania” and “Pencilvaneya” (author’s example), the
substrings “Pen”, “lvan” and “a” are common to both strings. The remaining characters are “nsy”

ATy

and “ci”, “i” and “ey”. There are 8 remaining characters and the strings have 12 characters, each.
Thus, the similarity index of the strings “Pennsylvania” and “Pencilvaneya” is 0.66 (%)

Our proposition is to use this algorithm to obtain similarity index between two given contour
linear representations strings. For instance, the linear representations of the Mozart’s contours M
and Nare <-+-+-+++ >and < + -+ -+ --- >, expressed as the strings “-+-+-+++" and
“+-+-+—", respectively. The AGP similarity value is 0.75.

This algorithm favors both local and global contour features. In the global level, the longest
common sequences are previously aligned, keeping possible large-scale contour structure. In
the local level, the adjacent relations are compared and only the differences between common
sequences decrease the similarity.

ii. Adjacent Edit Distance (AED)

The Adjacent Edit Distance Contour Similarity Algorithm (AED) is an application of the standard
Levenshtein Edit Distance algorithm [14] to handle the contour similarity problem. This algorithm
is available in the Dictionary of Algorithms and Data Structures [1] and is implemented in many
programming languages®.

Originally, the Levenshtein algorithm returns an integer as the distance value between two
given strings. The distance is given by the number of insertions, deletions or substitutions
to transform one string into the other. For instance, let the strings m “Pencilvaneya” and n

s

“Pennsylvania”, there are three substitutions (“c” with “n” at position 4, “i” with “s” at position 5
and “e” with “i” at position 10), one insertion (“y” at position 5) and one deletion (“y” at position
11) to transform m into n. Thus, the distance between m and # is 5.

My proposition is to use the Levenshtein algorithm as the base to obtain the similarity index
between two given contour linear representations strings. To calculate the similarity index, the

ratio between the distance and the size of the bigger string is subtracted from 1 (Equation 2).

- LEV(m,n)
MAX (m.length,n.length)

AED(m,n) =1 ()
For instance, the linear representations of the contours M and N are < - +-+ -+ ++ > and <

+-+-+--->, expressed as the strings “-+-+-+++"” and “+-+-+—". The distance between these

strings is divided by the size of the bigger contour. Thus, the AED similarity value is 0.5 (4/8).

5The Difflib source code is available at https://github.com/python/cpython/blob/master/Lib/difflib.py.
6See https://rosettacode.org/wiki/Levenshtein_distance for implementations of the Levenshtein Distance algo-
rithm.

63


https://github.com/python/cpython/blob/master/Lib/difflib.py
https://rosettacode.org/wiki/Levenshtein_distance

Journal MusMat e December 2018 e Vol. II, No. 2

| OSC AGP AED CMS EMB COR
Mean | 0.83 071 059 063 058 050
Std | 029 015 020 013 011 027

Table 3: Statistical summary of data of comparisons among contours of size from 2 to 6 of the various algorithms.

VI. ALGORITHMS COMPARISON

I used three contour collections to test the algorithms. The first is a sample of contours with sizes
from two to six generated automatically. This sample was obtained with confidence level 95% and
confidence interval 5%. The second is a sample of contours from the Bach Chorales collection,
and the third is composed by the contours of the phrases of the Robert Schumann’s Op. 15, n. 7
(Traumerei). I run a statistical analysis with the data from the three collections.

I didn’t use the CMS, COR and EMB algorithms to analyze Bach’s Chorales and Schumann’s
Traumerei Analysis because they are able only for contours with equal size—CMS and COR—or
are computational high complex—EMB (See Section VII for further information).

i. Contours with 2 to 6 points generated automatically

The first experiment dataset is a matrix of the similarity values given by OSC, AGP, AED, CMS,
EMB and COR algorithms to 142.845 equal sized contour pairs. These contours—535 in total—are
a random sample of contours with size between 2 and 6. The similarity values of each algorithm
differ from each other. The data mean ranges from 0.50 to 0.83, and the standard deviation, from
0.11 to 0.29 (See the Table 3). In general, these values are irregularly distributed, except by the
EMB algorithm data, normally distributed (See the Figure 2). There is a huge concentration of
values in the range between 0.9 and 1.0 in the OSC algorithm data (See the Figure 2a). The causes
for this concentration will be discussed in Section VII.

In general, there is a low correlation among these algorithms data (0.21 on average). The
highest correlation, 0.86, occurs between AED and COR algorithms data—both algorithms are
based on differences in the CAS elements—, and the lowest, 0, occurs between OSC and COR
algorithms (See Table 4). The relation among these algorithms data can be viewed in Figure 3.
The distribution that involves CMS, AGP and AED have aligned points for specific values—For
instance, in Figure 3d, there is a horizontal line in the AGP similarity 0.6 and 0.8. It shows that
these algorithms return a small set of values with this collection. This situation doesn’t occur in
the same way with OSC and OMB algorithms, despite the concentration of OSC similarity value
in the 1.0 (See Figure 3b).

The reason of this small set of values is the nature of the algorithm: an integer from zero to the
size of the contour divided by the size of the contour. Once the data has operations among equal
sized contours, the algorithm returns only a few different values. For instance, contours with four
points have CAS with three elements. The results will be only 0/3,1/3,2/3 and 3/3.

ii. Bach Chorales phrases analysis

The second experiment dataset is a matrix of the similarity values given by the OSC, AGP and
AED algorithms to 70.500 contour pairs. These contours—376 in total—are a random sample of
contours from all four voices of the Bach Chorales phrases. This sample has phrases with contours
with sizes from one to 28 points, with mean and standard deviation 8.27 and 3.41, respectively.
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Figure 2: Algorithm values distribution in comparisons among contours with size from 2 to 6

OSsC AGP AED CMS EMB COR
osC | 1.00 -0.01 -0.04 010 011 0.00
AGP | 001 100 076 013 031 0.1
AED | -004 076 100 010 017 0.86
CMS | 010 013 010 1.00 016 -0.02
EMB | 011 031 017 016 1.00 0.12
COR | 000 051 086 -0.02 012 1.00

Table 4: Correlation of algorithm measures of similarity among contours with size from 2 to 6.
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Figure 3: Comparison of algorithms values in contours with size from 2 to 6
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| OSC AGP AED
Mean | 0.60 0.62 052
Std | 029 015 0.14

Table 5: Statistical summary of data of comparing contours of a random sample of 376 Bach Chorales phrases by the
various algorithms.

| OSC  AGP AED
OSC | 1.00 0.03 -0.01
AGP | 003 100 0.87
AED | -001 087 1.00

Table 6: Correlation among algorithms datasets in Bach Chorales

The similarity values of each algorithm differ from each other, but not as much as in the
previous experiment. The data mean ranges from 0.52 to 0.62 and the standard deviation, from
0.14 to 0.29 (See Table 5). These values are normally distributed (AGP and AED algorithms) and
fairly uniformly distributed (OSC) (See the Figure 4). There is an expressive concentration of
values in the range between 0.9 and 1.0 in the OSC algorithm data (Figure 4a), slightly lower in
comparison to the first experiment (Figure 2a).

Table 6 contains the correlation values between the algorithms datasets. Figure 5 contains
similarity comparison for pairs of algorithms. There is no correlation between OSC dataset
and AGP and AED datasets—with correlation values are 0.03 and -0.01, respectively. The data
figures 5a and 5b confirm this lack of correlation. However, there is a strong correlation between
AGP and AED datasets (0.87), confirmed by the data in the figure 5c.

iii. Analysis of Schumann’s Op. 15, n. 7—Traumerei

The third experiment dataset is a matrix of the similarity values given by OSC, AGP and AED to
15 contour pairs. These contours—6 in total—were obtained from Schumann’s Triumerei phrases
(See the melody in Figure 6 and the contours in Table 7). This piece’s six phrases are equal in size,
but with a different number of contour points.

All piece phrases begin with anacrusis and similar contour, but end in different ways. The
OSC, AGP, and AED similarity values are very close (See Table 8). The values mean is between
0.81 and 0.86, and the standard deviation, between 0.07 and 0.09 (See Table 9). The correlation
between AGP and AED similarity values is high, still slightly higher than in the other experiments
(0.96), and the correlation among OSC and both AGP and AED similarity values is expressive (0.53
and 0.50, respectively), much higher than in the other experiments, where there was no correlation

Phrase | Contour
<02124698769345723463>
<021234109878105876574>
<03235798768456541>
<032346987684565421>
<02124698769345723463>
<0323571110987945684568123>

NG WD -

Table 7: Robert Schumann’s Triumerei contours
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Figure 4: Contour similarity distributions of a random sample of 376 Bach Chorales phrases.
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Figure 6: Robert Schumann’s Tridumerei melody (Op. 15, n. 7).
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1 2 3 4 5 6 1 2 3 4 5 6
1100 081 070 074 1.00 0.85 1|100 081 086 083 1.00 0093
21081 100 092 097 081 08 2]081 1.00 088 091 0.81 0.75
31070 092 100 09 070 08 3|08 088 1.00 097 086 0.79
41074 097 09 100 074 083 4|083 091 097 100 083 0.77
51100 o081 070 074 100 08 5|100 081 086 083 1.00 093
608 087 08 083 08 100 6093 075 079 077 093 1.00

(a) OSC (b) AGP

1 2 3 4 5 6
1.00 079 0.79 079 1.00 0.86
079 100 0.83 083 079 0.68
079 083 1.00 094 0.79 0.68
079 083 094 1.00 0.79 0.68
1.00 079 079 079 1.00 0.86
0.86 0.68 0.68 068 0.86 1.00

(c) AED

NCl = WIN -

Table 8: Contour similarity values among Schumann’s Triumerei phrases. The columns and rows refer to the phrase
numbers.

| OSC  AGP AED
Mean | 0.84 086 0.81
Std | 009 007 0.09

Table 9: Statistical summary of data of comparing contours of a Schumann’s Tridumerei phrases by the various
algorithms.

(See Table 10).

Finally, the similarity values for the adjacent contours perform a similar shape with the data of
the three algorithms (See Figure 7). There is an ascendent similarity until the phrase 4, the lowest
similarity between the phrases 4 and 5, and a return to a median similarity value between the
phrases 5 and 6. This observation of the similarity progress between adjacent phrases helps to
understand how approximation and withdraws—and consequently contrast and continuity—occur
throughout a music piece.

VII. DiscussioN

As seen in Section 1V, the Embedded Contour Similarity (EMB) and Oscillation Correlation
Similarity (OSC) are the only algorithms provided by the contour literature that are able to

| OSC  AGP AED
OSC | 1.00 053 050
AGP | 053 1.00 096
AED | 050 096 1.00

Table 10: Correlation of algorithms measures of similarity among the Schumann’s Triumerei phrases contours.
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Figure 7: OSC, AGP and AED similarity values among adjacent phrases in Schumann’s Triumerei.

Algorithm Complexity Different sizes
CMS Quadratic No
EMB Factorial Yes
COR Linear No
OsC Linear-logarithmic Yes
AGP Quadratic Yes
AED Linear-logarithmic Yes

Table 11: Algorithms computational complexity and ability to handle comparisons among contours with different sizes

compare contours with different sizes. Both proposed algorithms AGP, and AED are also able to
compare contours with different sizes.

In terms of computational complexity, the OSC, AGP, and AED have acceptable complexity
growth, but EMB not (See the Table 11). The EMB has a high computational complexity, of
a factorial order, and is therefore limited to small contours comparisons. The factorial order
complexity means that, given a contour with m points, it will take about m! calculations to obtain
the similarity value between it and a smaller contour. For this reason, it was not used in the
experiments 2 and 3, in Section VI, where there were big contours.

The computational time complexity of the EMB algorithm is factorial in function of the CEMB.
The number of combinations of a sequence is given by the binomial coefficient’ (Equation (3)).
Once the number of combinations of a given sequence is increased on a factorial basis, the
complexity of the CEMB algorithm will be of a factorial order of computational time complexity.
For instance, the number of calculations to obtain the similarity between the contours M and N is

7See [25] for further information concerning combinations and their calculus.
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in the order of 10°.

n!

) = =

)

Despite this problem of computational complexity, the algorithm returns the most normal
curve of similarity values for contours with size from 2 to 6 (See the Figure 2e). It performs better
than OSC, AGP and AED algorithms.

Unlike the EMB, the OSC algorithm is able to compare high length contours because has an
acceptable computational complexity order, linear logarithmic. It means that given a contour with
m points, it will take about m log(m) calculations to obtain the similarity value between it and a
smaller contour.

However, this algorithm has some weaknesses such as theoretical and practical concerns
about the use of Fourier analysis with discrete and short series as input—in contrast to the
expected sample of an infinitely periodic signal [26, p. 304]. The small size of the input series
will cause “edge effects”, decreasing the tool’s predictive power. Schmuckler defends the use
of the tool arguing that the goal “is not the typical predictive forecasting commonly associated
with time-series analyses” and that “Fundamentally, Fourier analysis is simply a mathematical
decomposition procedure that is applicable to any numerical series.” [26, p. 304], but admits that
the applicability of Fourier analysis to melodic contour is an open question.

According to Beard, another weakness is the way Schmuckler conducted his experiments: the
subjects are not asked to identify their perception of contour similarity, but to classify contour
complexity in a scale. Thus, the similarity is derived indirectly from contour complexity [2, p.
186]. He concludes the similarity is achieved by the subjects’” responses, not by Fourier model.
However, Schmuckler argues “multidimensional scaling literature suggests that derived similarity
data produces scaling metrics comparable to more direct similarity measures” [26, p. 317].

Besides the Schmuckler information about “edge effects” in Fourier analysis, the correlation
calculus with datasets with only two points is not very useful, once it returns only the values
-1, 0 or 1. The Fourier transform of small contours, with less than six points, results in only two
partials. Thus, this correlation results will be an “all or nothing” type.

In this way, the Contour Theory provides an algorithm that can be used only with small
contours (EMB) and another that can not be used with small contours (OSC). It’s difficult to
compare two contours with 5 and 12 points, for instance.

For these reasons I proposed the AGP and AED contour similarity algorithms, that can be used
with small and large contours. Once Fast Fourier Transform, Levenshtein and Ratcliff/Obershelp
algorithms have a linear-logarithmic order of complexity, both OSC, AGP® and AED have a similar
computational complexity.

The use of CAS as input ensures the local level similarity features in both AGP and AED
algorithms. However, only AGP has a focus on the global aspect, because the longest common
strings principle.

The pitfalls of these algorithms are the maximum similarity value for some different contours
pairs and the dependency on the contour size difference for the final value. Different contours like
<0213 >and <2301 > have AGP similarity index 1, because both are linearly represented as
< + -+ >. And the size difference between contours decreases the similarity values. For instance,
contours like <01 >and <010101010 > have AGP similarity index 0.22, despite the pattern
repetition.

8The AGP algorithm complexity is cubic in the worst case and quadratic in the expected case, but Difflib’s implementa-
tion is quadratic in the worst case and linear in the best case [10].
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| OSC  AGP AED
-0.08 -0.48 -0.55

Correlation

Table 12: Correlation between contour similarity value and contour size difference.
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Figure 8: Relation between contour similarity values and contour size difference

The size difference between the contour pairs has a negative correlation to the similarity values
given by both AGP and AED algorithms—in the Bach Chorales dataset. This correlation is —0.48
and —0.55, respectively. There is no correlation between the size difference and OSC similarity
values (See the Table 12 and Figure 8).

Finally, the experiments of the Section VI reveal there are contours with high OSC similarity
index values and low AGP ones, and vice-versa. For instance, OSC similarity index between the
contours <0123 >and <3210>,<0123>and <43210 > is 1.0, and the AGP similarity
index, 0.0. In the opposite corner, the contours <32123210>and <410254341 > has
OSC similarity index 0.01 and AGP similarity index 0.93. This difference occurs in the algorithms
pitfals: OSC processing small contours and AGP processing contours with great size difference.

For the pitfalls in the algorithms, I consider the contour similarity measurement as an open
problem. I propose AGP and AED to fill the gap of different size contours similarity, but this
proposition doesn’t close the contour similarity problem.
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VIII. CoONCLUSION

In this paper, I presented contour similarity algorithms provided by the literature and introduced
two new algorithms. I compared the algorithm’s results in three experiments—with generated
contours with 2 to 6 points, contours from the Bach Chorales phrases and with contours from a
single piece, by Schumann.

The OSC [26] and EMB [17] algorithms are sensitive to the contour sizes. The OSC algorithm
is good for contours with more than 5 points, and EMB, for contours with less than 7 or 8 points.
Neither is efficient in comparing small with large contours. I introduce two new algorithms to fill
this gap, but the difference between contour sizes is a pitfall in both of them. Thus, the contour
similarity problem has not yet been solved and demands further research.
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APPENDIX

Algorithm 1 CSIM algorithm
CSIM(A,B), where A and B are two contours with the same size n.
Letv=0
forifromOton—1do
for j fromi+1ton—1do
if cmp(A;, Aj) = cmp(B;, Bj) then
v=v+1
end if
end for
end for
return nZZEn

Algorithm 2 Translation algorithm

TRANSLATION(A), where A is a contour sequence with #n elements and H is a hash table with
records in {k, v} format.
Let H
Let B= SORT(A)
LET T =[]
forifromOton —1do
add {BJi],i} to H
end for
forifromOton—1do
add H[A[i]] to T
end for
return T
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Algorithm 3 CEMB algorithm
CEMB(m, A), where A is a contour sequence with n elements and m is the subsequence size.
if m = 0 then
return [[|]
end if
Let combinations = ]
forifromOton—1do
x = Alf]
S =CEMB(m—1,A[i+1])
for j from O to S.length — 1 do
add TRANSLATION([x] + S[j]) to combinations
end for
end for
return combinations

Algorithm 4 ALLCEMB algorithm
ALLCEMB(A), where A is a contour sequence with n elements.

Let combinations = ||
for i from 2 to n do
add CEMB(i, A) to combinations
end for
return combinations

Algorithm 5 COUNT algorithm
COUNT(ARR), where ARR is an array of contours and H is a hash table with records in {k, v}
format.
Let H
for i from 0 to ARR.length do
if ARR[i] € H.keys then

H[ARR[i]] =0
end if
H[ARR]i]] = H[ARR]i]] +1
end for
return H
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Algorithm 6 ACMEMB algorithm

ACMEMB(A, B), where A and B are two contour sequences and MERGE is a function that merges
two arrays in one and UNIQUE returns only the distinct elements of a given array.

Let Acomb = ALLCEMB(A)
Let Bcomb = ALLCEMB(B)
Let ALLcomb = MERGE(Acomb, Bcomb)
Let Z = UNIQUE(ALLcomb)
Let Acount = COUNT(Acomb)
Let Bcount = COUNT (Bcomb)
Letv =0
for i from O to Z.length — 1 do
if Z[i] € Acomb A Z[i] € Bcomb then
v = v+ Acount|Z]i]]
v = v + Beount[Z[i]]
end if
add CEMB(i, A) to combinations
end for

v
return Allcomb.length

Algorithm 7 Correspondence algorithm
CORRSIM(A,B), where A and B are two contours with the same size n.
Letov=0
forifromOton—2do
if cmp(A;, Ait1) = cmp(Bj, Biy1) then
v=uv+1
end if
end for

v
return T

Algorithm 8 Adapted Inverse Discrete Fourier Transform algorithm

ATFFT(A), where A is a sequence of numbers, and real returns the real part of a given complex
number.

Let N = A.length

Let S = ]
for k from0to N —1do
Letx=0

forn from 0to N —1 do
X =x _i_efZirfkn/NA[k]
end for
S[k] = real(x/N)
end for
return S
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